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ABSTRACT

As present weather forecast codes and increasingly many atmospheric climate models resolve at least part

of the mesoscale flow, and hence also internal gravity waves (GWs), it is natural to ask whether even in such

configurations subgrid-scale GWs might impact the resolved flow and how their effect could be taken into

account. This motivates a theoretical and numerical investigation of the interactions between unresolved

submesoscale and resolved mesoscale GWs, using Boussinesq dynamics for simplicity. By scaling arguments,

first a subset of submesoscale GWs that can indeed influence the dynamics of mesoscale GWs is identified.

Therein, hydrostatic GWs with wavelengths corresponding to the largest unresolved scales of present-day

limited-area weather forecast models are an interesting example. A large-amplitude WKB theory, allowing

for a mesoscale unbalanced flow, is then formulated, based on multiscale asymptotic analysis utilizing a

proper scale-separation parameter. Purely vertical propagation of submesoscale GWs is found to be most

important, implying inter alia that the resolved flow is only affected by the vertical flux convergence of

submesoscale horizontal momentum at leading order. In turn, submesoscale GWs are refracted by mesoscale

vertical wind shear while conserving their wave-action density. An efficient numerical implementation of the

theory uses a phase-space ray tracer, thus handling the frequent appearance of caustics. The WKB approach

and its numerical implementation are validated successfully against submesoscale-resolving simulations of

the resonant radiation of mesoscale inertia GWs by a horizontally as well as vertically confined submesoscale

GW packet.

1. Introduction

Internal gravity waves (GWs) play a significant role in

atmospheric dynamics on various spatial scales (Fritts

and Alexander 2003; Kim et al. 2003; Alexander et al.

2010; Plougonven and Zhang 2014). Already in the

lower atmosphere GW effects are manifold. Examples

include the triggering of high-impact weather (e.g.,

Zhang et al. 2001, 2003) and clear-air turbulence (Koch

et al. 2005), as well as the effect of small-scale GWs of

orographic origin on the predicted larger-scale flow

(e.g., Palmer et al. 1986; Lott and Miller 1997; Scinocca

and McFarlane 2000) and the GW impact on the gen-

eration of high cirrus clouds and polar stratospheric

clouds (e.g., Joos et al. 2009). Even more conspicuous

than in the lower atmosphere, however, are GW effects

in the middle atmosphere. The general circulation in the

mesosphere is basically controlled by GWs (Lindzen

1981; Holton 1982; Garcia and Solomon 1985). This also

seems to be of relevance to both medium-range weather

forecasts and climate modeling in the troposphere.

Middle-atmosphere circulation influences the lower

layers by downward control (Haynes et al. 1991), and

there is evidence of the importance of the middle at-

mosphere for long-range forecasting of winter weather

(Baldwin and Dunkerton 2001; Kidston et al. 2015;

Hansen et al. 2017; Jia et al. 2017) and climate (Scaife

et al. 2005, 2012) in the Northern Hemisphere.

As a substantial portion of the GW spectrum involves

scales too small to describe explicitly in current-resolution

climate models, accounting for such small-scale GWs
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poses an important parameterization problem to

atmospheric dynamics. With rising computing power

available, an increasing number of studies of middle-

atmosphere global GW dynamics uses models that can

resolve a part of the GW spectrum (Kawatani et al.

2009, 2010a,b; Brune and Becker 2013). This raises the

question of whether the neglected subgrid-scale (SGS)

GWs could impact the resolved flow, and, if so, how

their effect could be taken into account. In regard to

these issues, to the best of our knowledge, global

weather forecast codes, with horizontal mesh distances

of O(10) km, still generally use a parameterization of

SGS GWs, while high-resolution local-area codes used by

the weather services, with mesh distances of O(1)km,

typically do not. Since the ‘‘effective resolution’’ in such

codes is well above their mesh distances (Skamarock 2004;

Ricard et al. 2013), one might suppose that even there a

considerable portion of the GW spectrum is not captured.

However, a systematic investigation of the potential im-

pact of SGSGWson the resolvedmesoscale flow is lacking

at present.

Available GW parameterizations (e.g., Lindzen 1981;

Palmer et al. 1986; McFarlane 1987; Alexander and

Dunkerton 1999; Warner and McIntyre 2001; Scinocca

2003; Orr et al. 2010) invariably rely on WKB theory

(Bretherton 1966) for describing the interaction be-

tween scale-separated waves and (resolved) mean flow.

However, the specific implications of this theory may

depend on the scales involved. The classic scenario is the

interaction between a resolved synoptic-scale flow and

unresolved mesoscale inertia GWs. The corresponding

WKB theory (Grimshaw 1975;Achatz et al. 2017) aswell as

the generalized Lagrangian-mean theory (Andrews and

McIntyre 1978a,b; Bühler 2009) show that the wave am-

plitude is controlled by wave-action conservation, while

the synoptic-scale flow is described by a quasigeostrophic

potential vorticity that is affected by the GWs via

pseudomomentum-flux convergence. For efficiency

reasons, parameterizations use these theoretical re-

sults with drastic simplifications: (i) lateral GW prop-

agation and the impact of horizontal mean flow gradients

are ignored, and (ii) the time-dependent transient wave–

mean flow interaction is replaced by an equilibrium

picture where, because of the nonacceleration para-

digm, GWs can only modify the resolved flow when

they break. In the present context, the latter steady-

state approximation especially may not be entirely

justified. As pointed out by Bühler and McIntyre

(1998, 2003, 2005), wave transience is potentially im-

portant, and recently Bölöni et al. (2016) have shown

that in many cases it can attain at least an equally

important role as turbulent wave breaking in medi-

ating the impact of GWs on the resolved flow. It is also

essential to keep in mind that the standard WKB ap-

proach assumes from the outset geostrophic and hydro-

static balance of the synoptic-scale flow. It is therefore

not obvious that this theory can be applied to the

interaction between a mesoscale resolved flow and

mesoscale or submesoscale SGSGWs, which seems to

be the most appropriate scenario for GW parameteri-

zations in mesoscale-resolving models. In this setting, a

modified WKB theory that allows for a mesoscale un-

balanced large-scale flow would be most useful.

Of related interest is that packets of small-scale GWs

are capable of radiating larger-scale GWs. This possi-

bility was first suggested by Bretherton (1969) for two-

dimensional small-scale GW packets with isotropic

scaling, and more recently has been investigated further

by Van den Bremer and Sutherland (2014) for wave

packets of various aspect ratios. The radiation of large-

scale waves hinges on a resonance mechanism, wherein

the vertical phase velocity of the emitted long waves

matches the vertical group velocity of the small-scale

wave packet, which acts as a traveling wave source.

Furthermore, the vertical wavenumber of the long wave

is set by the scale of the wave packet envelope. In a

related study, Tabaei and Akylas (2007) show that the

longwave radiation process is especially enhanced if the

small-scale wave packet is ‘‘flat’’ (i.e., its envelope is

elongated in the horizontal relative to the vertical) so

that both the horizontal and vertical envelope scales can

be compatible with free, nearly steady, long GWs. All of

these studies assume the small-scale GWs to be non-

hydrostatic. They do not investigate, however, which

small-scale GWs in general are able to interact with

given mesoscale long GWs.

Moreover, no prior study examines the feasibility of a

model for SGS GWs in a resolved mesoscale flow.

Closest to this comes the WKB model of Tabaei and

Akylas (2007). These authors, however, report numeri-

cal instability problems once the wave–mean flow in-

teraction develops caustics where the initially locally

monochromatic small-scale GW field exhibits multi-

valued wavenumbers. This problem, also observed by

Rieper et al. (2013a), can be circumvented, however. As

shown by Muraschko et al. (2015) and Bölöni et al.

(2016), a spectral approach based on phase-space wave-

action density yields numerically stable and fast algo-

rithms for the efficient integration of the coupled

equations of small-scale GWs in a larger-scale flow.

Building on the above brief review of related prior lit-

erature, the goals of the present paper are (i) a systematic

investigation of which smaller-scale GWs are able to in-

teract resonantly with given typical mesoscale GWs, (ii)

the development of a WKB theory for the efficient de-

scription of this interaction, (iii) the implementation of a
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numerical algorithm for this theory, and finally (iv) the

validation of the WKB theory and its numerical imple-

mentation against submesoscale-resolving simulations of

the radiation of mesoscale GWs by horizontally and ver-

tically confined submesoscale GW packets as considered

earlier by Bretherton (1969), Van den Bremer and

Sutherland (2014), and Tabaei and Akylas (2007).

The paper is structured as follows. The GW scales of

interest are identified in sections 2a and 2b; these scales

form the basis for nondimensionalizing the Boussinesq

equations and formulating an appropriate multiscale as-

ymptotic ansatz in section 2c. Leading- and next-order

WKB approximations are discussed in section 2d, which

eventually yield (section 2e) a coupled energy-conserving

equation system of linear Boussinesq equations for the

mesoscale, and one-dimensional ray equations for the

submesoscale dynamics. Subsequently, our numerical

models are described in section 3; the initial conditions of

the numerical experiments aremotivated in section 4a, and

section 4b briefly discusses the postprocessing of themodel

output data. In section 4c, a kinematic analysis similar to

ship wake theory is used to predict the geometry of the

inducedmesoscale wave disturbance, on the assumption of

steady state forcing by a propagating submesoscale GW

packet. In section 4d, the simulation results of different test

cases are presented and compared against the theoretical

predictions. Finally, the article concludes with a summary

and discussion of the main findings in section 5.

2. Theory: Basics and formalism

For simplicity the interaction between mesoscale

and submesoscale GWs is studied in a rotating, in-

compressible, and inviscid Boussinesq atmosphere with

height-dependent background stratification, character-

ized by Coriolis parameter f and Brunt–Väisälä fre-

quency N(z). Under these flow conditions, the governing

equations are

Dv

Dt
1 fe

z
3 u52=p1 be

z
, (1)

Db

Dt
1N2w5 0, (2)

= � v5 0, (3)

where D/Dt 5 ›/›t 1 v � = is the material derivative, ez
denotes the unit vector pointing upward, and v is the full

and u the horizontal velocity vector, while w stands for

the vertical velocity component. Furthermore, p and

b are the density-weighted pressure deviation and the

buoyancy deviation, respectively, from a reference at-

mosphere with stratification N2(z), generally slowly

varying in the vertical. These equations can capture

essential aspects of local dynamics at various scales, as

long as the vertical length scale of the waves is smaller

than the atmospheric density scale height.

a. Wave scaling

In the following a (resolved) mesoscale flow inter-

acting with (unresolved) smaller-scale motions is con-

sidered, termed ‘‘submesoscale’’ for simplicity. The

question arises which, if any, submesoscale motions are

able to leave an impact on the mesoscale flow. Here this

issue is addressed by considering possible interactions

between a mesoscale and a submesoscale GW.

The mesoscale GW (subscript m) is taken to have

horizontal and vertical length scales Lm and Hm, re-

spectively, with an aspect ratio of the order

a
m
5

H
m

L
m

5
f

N*
, (4)

where N* is a characteristic value of the Brunt–Väisälä
frequency N, so that the mesoscale intrinsic frequency

v̂m is equally affected by rotation and stratification, as

follows from the general GW dispersion relation

v̂2 5
f 2m2 1N2 (k2 1 l2)

k2 1 l2 1m2
. (5)

Here, N2 5 O(N2

*) is meant to be the local value of

the stratification, and k and l are the horizontal and m

the vertical wave vector components, so that Lm 5
O[1/(k2

m 1 l2m)
1/2] and Hm 5 O(1/mm). These scaling as-

sumptions are met, for instance, in the case where the

horizontal and vertical scale are smaller by a synoptic-scale

Rossby number than the Rossby deformation radius and

the vertical scale height, respectively; in such situations one

can take (Hm, Lm)5 (1, 100)km (Achatz et al. 2017). The

submesoscale wave (subscript w) has shorter vertical and

horizontal scales Hw and Lw, respectively, satisfying

(H
w
,L

w
)5 (hH

m
,hpL

m
), (6)

with h � 1 a small parameter and p . 0, so that the

submesoscale aspect ratio is of the order

a
w
5

H
w

L
w

5h12p f

N*
. (7)

The respective wave amplitudes are chosen as large as

possible while keeping the analysis tractable. Hence, the

submesoscale wave is assumed to be at the margin of

static instability, where db/dz 5 O(N2), so that the

buoyancy-amplitude scale is

B
w
5H

w
N2

* , (8)
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implying vertical displacements on the order of the sub-

mesoscale vertical scale. As for the mesoscale flow, if a

marginally statically stable buoyancy amplitude is as-

sumed, it turns out that the submesoscale-wave frequency

v 5 v̂ 1 kwh � um—with kwh indicating the horizontal

submesoscale wave vector and um representing the me-

soscale horizontal wind—is dominated by the Doppler

term due to the strong mesoscale-flow horizontal winds,

while the intrinsic frequency v̂ is relatively small; as a re-

sult, submesoscale motions are mainly transported by the

mesoscale flow in such a regime. For this reason, the me-

soscale buoyancy-amplitude scale is restricted to satisfy

B
m
5hH

m
N2

*5B
w
, (9)

which actually agrees with the submesoscale buoyancy-

amplitude scale.

The remaining scales of interest follow from the

buoyancy equation, (2), and the continuity equation,

(3), with thematerial derivative scaling with the intrinsic

frequency, which provides the inverse time scale. Spe-

cifically, the buoyancy equation yields a mesoscale

vertical-wind scale:

W
m
5

fB
m

N2

*
5hfH

m
. (10)

From the continuity equation follows a mesoscale

horizontal-wind scale

U
m
5

W
m
L

m

H
m

5hfL
m
, (11)

and one also notes for later reference that the mesoscale

time scale is Tm 5 1/f. Likewise, one obtains for the

submesoscale horizontal- and vertical-velocity scales

U
w
5

W
w
L

w

H
w

5
L

w

H
w

V
w

f
W

m
5

L
w

H
w

V
w

N*
U

m
5hp21Vw

f
U

m
,

(12)

W
w
5

V
w
B

w

N2

*
5V

w
H

w
5
V

w

f
W

m
, (13)

whereVw is the scale-dependent submesoscale intrinsic-

frequency scale. From the dispersion relation, (5), to a

good approximation,

V
w
(a

w
)5

8>>>>>>><
>>>>>>>:

f , a
w
#

f

N*

N*aw ,
f

N*
, a

w
# 1

N*, a
w
. 1

. (14)

Of these, the last, strongly nonhydrostatic regime is

generally modulationally unstable (Sutherland 2001)

and hence not considered here.

b. Regimes of interaction between mesoscale and
submesoscale motions

Decomposing the total flow intomesoscale and smaller-

scale submesoscale motions, (v, b)5 (vm, bm)1 (vw, bw),

it is expected that the latter can only influence the former

via flux-convergence terms. For such an interaction to be

possible, these termsmust be of the samemagnitude as (or

larger than) the leading mesoscale terms in the governing

equations. To meet this condition, submesoscale wave

fields are considered, with scaling as introduced above,

that are spatiallymodulated on themesoscale, in response

to the two-way interaction between mesoscale and

submesoscale flow. As explained in the appendix, it is

then possible to identify a sufficiently scale-separated

regime, where submesoscale motions may interact

significantly with mesoscale GWs. In this regime the

small-scale GWs lie in the midfrequency range f/N* ,
aw # 1, and their scale separation is obtained by

setting p 5 2.

Specifically, incorporating this finding in (7) leads to a

submesoscale aspect ratio

a
w
5

f

hN*
. (15)

For the midfrequency range f/N* , aw # 1 this implies,

under the requirement of a sufficiently strong scale

separation h � 1,

f

N*
#h � 1: (16)

According to (6), this scaling bears a stronger scale

separation in the horizontal than in the vertical

(H
w
,L

w
)5 (hH

m
,h2L

m
). (17)

In keeping with (15) and (16), aw 5 hq is put, where

q $ 0, so that

h5

�
f

N*

�1/(11q)

. (18)

While, asymptotically, q $ 0 is a free parameter, for

atmospheric applications where f/N*5 O(1022), a

sufficiently scale-separated general scaling regime

can be identified in the finite range 0 # q # 1. In view

of (17) and (18), two characteristic limit cases thus

arise:
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q5 0: h5
f

N*
, H

w
5L

w
5

f

N*
H

m
(19)

q5 1: h5

ffiffiffiffiffiffiffi
f

N*

s
, H

w
5

ffiffiffiffiffiffiffi
f

N*

s
H

m
, L

w
5

f

N*
L

m
.

(20)

The first (nonhydrostatic) limit case is the one also dis-

cussed by Tabaei and Akylas (2007). Here the scale

separation is quite large and the mesoscale-wave am-

plitude that can be affected is rather small. The most

interesting case for atmospheric applications is the sec-

ond (hydrostatic) limit, for which the mesoscale-wave

impact is the strongest. For instance, taking (Hm, Lm)5
(1, 100) km and f/N*5 1022, from (20) it is then found

that (Hw, Lw)5 (0.1, 1) km. Notably, this scale estimate

is in good agreement with present-day local-area weather-

forecast-code mesh distances (see section 1).

For later reference, Table 1 provides an overview of

the scales deduced in this section. It is worth noting that

the pressure scales follow from ›pm,w/›z 5 O(bm,w),

which hold both in the hydrostatic and nonhydrostatic

regime, so that

(P
m
,P

w
)5 (H

m
B

m
,H

w
B

w
)5 (hH2

mN
2

*,h
2H2

mN
2

*), (21)

as can be also verified from the GW polarization re-

lations. Finally, the submesoscale time scale is the in-

verse intrinsic-frequency scale

T
w
5

1

V
w

5
f

N*aw

1

f
5hT

m
. (22)

c. Nondimensional equations, multiscale asymptotics,
and WKB ansatz

In the next step, the scaling for the submesoscale GWs

derived above (see Table 1) is used to nondimensionalize

the governing equations, (1)–(3). After substituting

(u,w,b,p)/ (U
w
u,W

w
w,B

w
b,P

w
p), (23)

(x
h
, z, t)/ (L

w
x
h
,H

w
z,T

w
t), (24)

(f ,N2)/ (ff
0
,N2

*N
2
0)5

 
ff
0
,
N2

0

a2wT
2
w

!
, (25)

where the subscript h denotes the horizontal compo-

nents (here of the position vector x), the dimensionless

equation system reads

Dv

Dt
1hf

0
e
z
3 u52=

h
p2

1

h2q

�
›p

›z
2 b

�
e
z
, (26)

Db

Dt
1N2

0w5 0, (27)

= � v5 0. (28)

Next, ‘‘compressed’’ variables are introduced to de-

scribe the slow variations of the resolvedmesoscale flow,

as compared to those of the submesoscale flow,

(X,T)5 (X
h
,Z,T)5 (h2x

h
,hz,ht), (29)

and then a WKB ansatz to describe a locally mono-

chromatic submesoscale wave with slowly varying am-

plitude, wavenumber, and frequency is used. For a

generic variable j it reads

j (x, t)5<X (X,T)ei[f(X,T)/h2], (30)

where X(X, T) indicates the (slowly varying) amplitude

and f(X, T)h22 the (rapidly varying) phase. Following

Tabaei and Akylas (2007), the latter is defined as

f(X, T) 5 f0(Xh) 1 hf1(Xh, Z, T), so that the local hori-

zontal wavenumber, vertical wavenumber, and frequency are

=
h

�
f

h2

�
5=

Xh
f

0
1h=

Xh
f
1
[ k

(0)
h (X

h
)1hk

(1)
h (X

h
,Z,T),

(31)

›

›z

�
f

h2

�
5

›f
1

›Z
[m (X

h
,Z,T), (32)

›

›t

�
f

h2

�
5

›f
1

›T
[2v (X

h
,Z,T), (33)

where=X denotes compressed spatial derivatives. Finally,

all fields are expanded in the small scale-separation pa-

rameter h, taking into account the scaling derived above,

TABLE 1. Overview of the appropriate scales for the interaction between mesoscale flow (subscript m) and submesoscale (subscript w)

motions.

Mesoscale GW Submesoscale GW

Vertical length scale Hm Hw 5 hHm

Horizontal length scale Lm 5 (N*/f )Hm Lw 5 h2Lm

Time scale Tm 5 f21 Tw 5 hTm

Scale of buoyancy amplitude Bm 5 hN2

*Hm Bw 5 Bm

Scale of horizontal wind amplitude Um 5 hN*Hm Uw 5 Um

Scale of vertical wind amplitude Wm 5 hfHm Ww 5 h21 Wm

Scale of pressure fluctuation amplitude Pm 5 hN2

*H
2
m Pw 5 hPm
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and using subscripts 0 and 1 for the mesoscale and sub-

mesoscale parts, respectively:

0
BBBB@

u

w

b

p

1
CCCCA5 �

‘

j50

h j

2
6666664

u
(j)
0 (X,T)

hw
(j)
0 (X,T)

b
(j)
0 (X,T)

h21p
(j)
0 (X,T)

3
7777775

1<�
‘

j50

hj

2
6666664

u
(j)
1 (X,T)

w
(j)
1 (X,T)

b
(j)
1 (X,T)

p
(j)
1 (X,T)

3
7777775
ei[f(X,T)/h2]. (34)

Note that in this ansatz both mesoscale-field and

submesoscale-wave amplitude as well as spatial and

temporal scaling are all given in terms of the scale sep-

aration parameter h. There is no separate amplitude

parameter. Higher harmonics of the submesoscale

waves are neglected, as they can be shown to not con-

tribute at leading order due to the dispersive GW dis-

persion relation (Achatz et al. 2017).

d. Order analysis

After inserting the multiscale asymptotic ansatz, (34),

into the nondimensional equations, (26)–(28), all terms

are sorted by equal powers of h and the phase factor

eih
22f (X,T). Terms without phase factor describe mesoscale

dynamics, while those proportional to the phase factor

yield information on submesoscale wave dynamics; other

harmonics, like e2ih
22f (X,T) and higher, are not considered,

as noted above. The following will be kept concise, as the

procedure is standard (e.g., Achatz et al. 2010, 2017).

1) LEADING-ORDER RESULTS

The leading order of the vertical momentum equation

establishes that the mesoscale flow is hydrostatic,

›p
(0)
0

›Z
2 b

(0)
0 5 0 , (35)

while the leading-order submesoscale terms in the

equations can be summarized asMq(k
(0)
h , m, v̂)s

(0)
1 5 0,

where Mq is the antihermitian coefficient matrix

M
q
(k

(0)
h ,m, v̂)5

0
BBBBB@

2iv̂ 0 0 0 ik (0)

0 2iv̂ 0 0 il (0)

0 0 2iv̂d
q,0

2N
0

im

0 0 N
0

2iv̂ 0

ik (0) il (0) im 0 0

1
CCCCCA

(36)

with the well-known Kronecker delta dq,0; the intrinsic

frequency v̂5v2 k
(0)
h � u (0)

0 , that is, the frequency rel-

ative to the mesoscale velocity; and

s
(0)
1 5

 
u
(0)
1 , n

(0)
1 ,w

(0)
1 ,

b
(0)
1

N
0

, p
(0)
1

!T

, (37)

the vector of leading-order submesoscale wave ampli-

tudes. Nontrivial submesoscale wave amplitudes s
(0)
1 6¼ 0

require a vanishing determinant of Mq, leading to either

the balanced solution v̂5 0 or the GW dispersion

relation

v̂56N
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk (0)

h j2
jk (0)

h j2d
q,0

1m2

vuut . (38)

The corresponding null vector yields the submesoscale

wave-amplitude polarization relations

(w
(0)
1 , p

(0)
1 ,u

(0)
1 )5 iv̂

(
1

m
,2

v̂

jk (0)
h j2

,2
k
(0)
h

jk (0)
h j2

)
a (0) , (39)

where a (0) 5mN22
0 b

(0)
1 defines the buoyancy amplitude

relative to the margin of static instability.

While the leading-order horizontal wavenumber

does not develop in time, vertical wavenumber and

frequency do. From their definition and the dispersion

relation

v (X,T)5 k
(0)
h � u (0)

0 (X,T)6N
0
(Z)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk (0)

h j2
jk (0)

h j2d
q,0

1m2

vuut
[V (X,T,k),

(40)

one obtains their prognostic eikonal equations

�
›

›T
1 c

gz

›

›Z

�
v5

›V

›T
5 k

(0)
h � ›u

(0)
0

›T
(41)

�
›

›T
1 c

gz

›

›Z

�
m52

›V

›Z

52k
(0)
h �›u

(0)
0

›Z
7
dN

0

dZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk (0)

h j2
jk (0)

h j2d
q,0
1m2

vuut ,

(42)

where cgz 5 ›V/›m is the (intrinsic) vertical group ve-

locity. No horizontal group velocities appear since, at

the submesoscales considered, to leading order, energy

is transported only vertically.
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2) HIGHER-ORDER RESULTS

The next-to-leading (‘‘second’’) orders in h yield the

following mesoscale-flow equations:

›b
(0)
0

›T
1N2

0w
(0)
0 5 0, (43)

›u
(0)
0

›T
1 f

0
e
z
3u

(0)
0 1=

Xh
p
(0)
0 52

1

2

›

›Z
<fw (0)

1 u
(0)*
1 g , (44)

while the ‘‘third’’ order of the mesoscale part of the

continuity equation reads

=
X
� v (0)

0 5 0, (45)

with v
(0)
0 5 u

(0)
0 1w

(0)
0 ez. As expected, a submesoscale-

wave impact only exists in the horizontal momentum

equation.

With the definition

r
q
52

2
66666666666666666666664

�
›

›T
1 iy

�
u
(0)
1 1w

(0)
1

›u
(0)
0

›Z
2 f

0
n
(0)
1 1 ik (1)p

(0)
1

�
›

›T
1 iy

�
n
(0)
1 1w

(0)
1

›n
(0)
0

›Z
1 f

0
u
(0)
1 1 il (1)p

(0)
1

�
›

›T
1 iy

�
w

(0)
1 d

q,0
1

›p
(0)
1

›Z

1

N
0

�
›

›T
1 iy

�
b
(0)
1 1

1

N
0

w
(0)
1

›b
(0)
0

›Z

ik
(1)
h � u (0)

1 1
›w

(0)
1

›Z

3
77777777777777777777775

,

(46)

using the shortcut y5 k
(0)
h � u (1)

0 1 k
(1)
h � u (0)

0 1mw
(0)
0 , the

submesoscale wave terms of the equations give for

the next-to-leading orders in h the equation set

Mq(k
(0)
h , m, v̂)s

(1)
1 5 rq, where

s
(1)
1 5

 
u
(1)
1 , n

(1)
1 ,w

(1)
1 ,

b
(1)
1

N
0

, p
(1)
1

!T

(47)

contains the next-order wave amplitudes. The matrix

Mq has a nonvanishing null space and thus rq may not

project onto it. This amounts to s
(0)y
1 rq 5 0, with y for

the complex conjugate transpose, yielding

›e
w

›T
1
1

2

›

›Z
<fw (0)

1 p
(0)*
1 g52

1

2
<fw (0)

1 u
(0)*
1 g �›u

(0)
0

›Z
, (48)

where * denotes the complex conjugate, for the energy

density

e
w
5e

(0)
1 5

1

4

 
ju (0)

1 j21jw (0)
1 j2d

q,0
1

1

N2
0

jb (0)
1 j2

!
5

1

2N2
0

jb (0)
1 j2 .

(49)

Using the dispersion relation, (38), and polarization

relations, (39), the energy flux and the shear-

production term are expressed as

1

2
<fw (0)

1 p
(0)*
1 g5 c

gz
e
w
, (50)

1

2
<fw (0)

1 u
(0)*
1 g � ›u

(0)
0

›Z
5 c

gz

e
w

v̂
k
(0)
h � ›u

(0)
0

›Z
. (51)

Thus, the wave-action conservation equation is obtained

from (48), yielding

›A
w

›T
1

›

›Z

�
c
gz
A

w

�
5 0 , (52)

where Aw 5 ewv̂
21 is the wave-action density.

e. Redimensionalization

The essential meso- and submesoscale equations de-

rived in section 2d are finally transformed back into the

original coordinates and redimensionalized by applying

the substitutions

(u
(0)
0 ,w

(0)
0 ,b

(0)
0 , p

(0)
0 )/

�
U

U
m

,
W

W
m

,
B

B
m

,
P

P
m

�
, (53)
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(0)
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(0)
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(0)
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B
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, (54)
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�
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x
h
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h

H
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h

T
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�
, (55)

(f
0
,N2

0)/

�
f

f
, a2wT

2
wN

2

�
, (56)

(k
(0)
h ,m, v̂)/ (L

w
k
h
,H

w
m,T

w
v̂) . (57)

The dispersion and polarization relations, (38) and (39),

of the submesoscale GWs now read

v̂56N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk

h
j2

jk
h
j2d

q,0
1m2

vuut , (58)

( ~w, ~p, ~u)5 iv̂

(
1

m
,2

v̂

jk
h
j2,2

k
h

jk
h
j2
)
~a , (59)

with ~a5mN22 ~b, and their energy density is given by

«
w
5

1

4

�
j~uj2 1 j ~wj2d

q,0
1

1

N2
j ~bj2

�
5

1

2N2
j ~bj2 , (60)
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with the corresponding wave-action density

A5 «wv̂
21.

The so-called ray equations, consisting of the eiko-

nal equations, (41) and (42), as well as the wave-action

density equation, (52), describe completely the sub-

mesoscale dynamics, while the mesoscale dynamics is

governed by the buoyancy, continuity, and momen-

tum equations, (35) and (43)–(45). After back-

transformation to the original coordinates and

redimensionalization, a coupled equation system for the

interaction between meso- and submesoscale GWs is

obtained. Specifically, the mesoscale prognostic equa-

tions are

= �V5 0, (61)

›B

›t
1N2W5 0, (62)

›P

›z
2B5 0, (63)

›U

›t
1 fe

z
3U1=

h
P52k

h

›

›z

�
c
gz
A
�
, (64)

where V 5 U 1 Wez. These equations are linear in the

mesoscale variables since the corresponding wave am-

plitude is sufficiently low. All mesoscale-flow non-

linearities disappear in the asymptotic limit of small h.

The submesoscale-wave forcing acts via the conver-

gence of the vertical flux of pseudomomentum khA, as

one finds from (44) and (51). The submesoscale dy-

namics is given by

�
›

›t
1 c

gz

›

›z

�
v5 k

h
� ›U
›t

, (65)

�
›

›t
1 c

gz

›
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�
m52

0
@k

h
� ›U
›z

6
dN

dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk

h
j2

jk
h
j2d

q,0
1m2

vuut
1
A,

(66)�
›

›t
1 c

gz

›

›z

�
A52A

›c
gz

›z
. (67)

Vertical propagation of the waves is too fast for lateral

propagation effects to matter within the time elapsing

during the vertical propagation over amesoscale vertical

length scale. Note that (65) follows from (66) and the

dispersion relation, (58), and hence is not an in-

dependent equation in the submesoscale model. The

vertical group velocity cgz may be calculated with the

help of the current vertical wavenumber m.

Finally, it is to be mentioned that the coupled equa-

tion system (61)–(67) is energy conserving. For the

mesoscale energy density «m 5 1/2(jUj2 1 B2/N2), one

finds from (61)–(64) that its tendency obeys

›«
m

›t
5U � ›U

›t
1

1

N2
B
›B

›t

52U�
�
fe

z
3U1=

h
P1k

h

›

›z

�
c
gz
A
��

2
1

N2
BN2W

52= � (VP)2U � k
h

›

›z

�
c
gz
A
�
, (68)

while it can be seen from the dimensional version of

(48), (50), and (51) that the evolution of submesoscale

energy density «w 5Av̂ is governed by

›«
w

›t
52

›

›z

�
v̂c

gz
A
�
2 c

gz
A

›

›z
(U � k

h
) . (69)

Therefore, the local total energy density «t 5 «m 1 «w
satisfies

›«
t

›t
52= � (VP)2

›

›z

�
vc

gz
A
�
. (70)

As a result, if there is no mesoscale pressure flux at all

boundaries, and no submesoscale energy flux vcgzA at

the vertical boundary of the domain, or if periodic

boundary conditions hold, the spatially integrated total

energy density Et is conserved:

dE
t

dt
5

d

dt

ð
«
t
d3x5 0 . (71)

3. Description of the numerical models

In this section the numerical code used for validation

tests is described: the WKB code PincFloit–WKB is an

implementation of the theory presented above. Pinc-

Floit without WKB submesoscale-wave model, but in-

stead in a setting explicitly resolving the submesoscale

waves, is used for large-eddy simulations (LESs) to

provide data against which to validate the WKB model

as well as its underlying theory. Since the GW dynamics

is invariant with regard to rotation of the horizontal

coordinate system, both codes have been used in

2D mode.

a. The PincFloit–WKB model

1) SUBMESOSCALE FLOW: THE LAGRANGIAN

WKB MODEL

The numerical implementation of the interaction be-

tween submesoscale and mesoscale flow is achieved by

coupling a Lagrangian phase-space ray tracer (Muraschko

et al. 2015) to themesoscale-resolvingmodel PincFloit. As

can be read directly from the submesoscaleGWequations,

(66) and (67), along rays satisfying
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dz

dt
5 c

gz
5 7

Njk
h
jm

(jk
h
j2 1m2)

3
2

(72)

vertical wavenumber and wave-action density develop

according to

dm

dt
5 _m52

0
@k

h
� ›U
›z

6
dN

dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk

h
j2

jk
h
j2 1m2

vuut
1
A (73)

dA
dt

52A
›c

gz

›z
, (74)

while the frequency can be obtained from the wave-

number and local mesoscale flow by the dimensional

version of the full dispersion relation, (40). In (73) the

replacement dq,0/ 1 has been done, since in the case q5
1, one has k2�m2 anyway. Direct implementation of this

model leads, however, to serious numerical instabilities

(Tabaei and Akylas 2007; Rieper et al. 2013a). These are

due to caustic situations where rays cross, leading to

multivalued wavenumbers and wave-action densities.

This can be avoided by taking a spectral perspective

(Muraschko et al. 2015), where (72) and (73) indicate

movement through a phase space spanned by vertical

position andwavenumber.Wave-action densityA (x, t) is

then replaced by the spectral phase-space wave-action

densityN (x,m, t) (e.g.,Dewar 1970;Olbers 1976; Bühler
and McIntyre 1999; Hertzog et al. 2002; Muraschko et al.

2015), developing along the rays according to

d
r
N
dt

5 0, (75)

with dr/dt 5 ›/›t 1 cgz›/›z 1 _m›/›m as the phase-space

material derivative. The physical space wave-action den-

sityA can be retrieved from it by thewavenumber integral

A (x, t) 5
Ð
dm N (x, m, t), and the submesoscale mo-

mentum flux, for example, is obtained from

c
gz
k
h
A/

ð
dmc

gz
k
h
N . (76)

This requires reconstructing the full phase-space de-

pendence of N from infinitely many rays. In a first

discretization step 1 therefore collects rays carrying

nonzero wave action in a number of rectangular ray

volumes with constantN . In principle the individual ray

velocities will deform these ray volumes arbitrarily

strongly. In a second discretization step, this de-

formation is simplified by prescribing the ray volumes to

keep a rectangular shape. More details on this and the

corresponding momentum-flux reconstruction are given

by Muraschko et al. (2015) and Bölöni et al. (2016).

The submesoscale momentum flux as well as energy

density are smoothed after regridding over a window

of 3 3 3 PincFloit finite-volume cell equivalents [see

sections 3a(2) and 3a(3) below] in order to avoid artifi-

cial peaks resulting from sampling problems due to the

ray discretization. Moreover, in the simulations the ef-

fect of submesoscale horizontal group velocity is indeed

small compared with that of the vertical group velocity,

as found in theory, but still noticeable in the compari-

sons with the LES. Therefore, this effect has been in-

corporated by allowing the ray volumes to also propagate

in the horizontal direction for several simulations,

d
r
x
h

dt
5U

h
6

Nm2

(jk
h
j2 1m2)3/2

k
h

jk
h
j5 c

gh
, (77)

implying as well a generalized phase-space material

derivative dr/dt 5 ›/›t 1 cg � = 1 _m›/›m, with cg the 3D

group velocity. Finally, the ray tracer has been supple-

mented by a simple saturation scheme (Bölöni et al.

2016) to account for turbulent wave breaking. The wave-

action density of the submesoscale GW packet is locally

reduced, when its amplitudes reach the upper limit of

static stability. Results show that the saturation is im-

portant for the total energy budget. In the present

Boussinesq context, however, it has not contributed

significantly to the instantaneous wave field distribution

and simulation results discussed below.

2) MESOSCALE FLOW: PINCFLOIT

The pseudoincompressible flow solver with implicit tur-

bulence modeling (PincFloit), originally developed by

Rieper et al. (2013b) to solve the pseudoincompressible

equations of Durran (1989), modified appropriately to in-

tegrate the Boussinesq equations, (1)–(3), has been used at

mesoscale resolution to simulate the resolved mesoscale

flow. To account for the impact of the unresolved sub-

mesoscale waves, the momentum equation has been sup-

plemented by the corresponding convergence of horizontal

pseudomomentum flux, as indicated by (64) and (76):

DV

Dt
1 fe

z
3U52=P1Be

z
2

›

›z

ð
dmc

gz
k
h
N . (78)

The latter is provided by the Lagrangian WKB code de-

scribed above. As adumbrated by (78), in PincFloit the

leading-ordermesoscale dynamics is identifiedwith the full

resolved mesoscale nonlinear flow. Technically, PincFloit

uses a finite-volume discretization with a staggered grid.

Time integration is performed by an adaptive third-order

Runge–Kutta scheme with a CFL criterion. Pressure is

computed, using the nondivergence constraint, (61), by

solving the corresponding Poisson equation. The latter is
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done using a biconjugate gradient stabilized method

(BiCGSTAB) method (van der Vorst 1992). More de-

tails can be found in Rieper et al. (2013b).

3) THE COUPLED PINCFLOIT–WKB MODEL

PincFloit and the Lagrangian WKB model are

coupled interactively, so as to simulate the tran-

sient interaction processes of resolved mesoscale

and unresolved submesoscaleGWs, as derived in section 2.

At every Runge–Kutta substep, information is ex-

changed between the mesoscale and the submesoscale

dynamics. The Lagrangian WKB model determines the

momentum flux convergence of the submesoscale waves

via the discretization of (76) and updates the mesoscale

wind field, which is then delivered to PincFloit. Here-

after, the latter integrates the Boussinesq equations,

(1)–(3), at mesoscale resolution. After that, the new

wind and background values are provided to the La-

grangian WKB model, which solves the ray-tracing

equations, (72), (73), and (75), [as well as (77), if in-

tended], yielding an updated submesoscale wave mo-

mentum flux and thus closing the circle.

Another remark is that this coupled system conserves

the sum of mean flow and wave energy too. From the

Boussinesq equations, (1)–(3), it can be derived for the

mesoscale-flow energy density «m5 1/2(jVj21B2/N2) that

›«
m

›t
52= � [V («

m
1P)]2

›

›z

�
U �
ð
c
gz
k
h
N dm

�

1
›U

›z
�
ð
c
gz
k
h
N dm , (79)

while Bölöni et al. (2016) have shown for the sub-

mesoscale wave energy density «w 5
Ð
dm v̂N that

›«
w

›t
52

›

›z

ð
v̂c

gz
N dm2

›U

›z
�
ð
c
gz
k
h
N dm , (80)

so that total energy
Ð
«t d

3x 5
Ð
(«m 1 «w) d

3x is con-

served under suitable boundary conditions (zero or pe-

riodic) for the respective fluxes.

b. PincFloit–LES

In LES mode PincFloit is used to integrate the fully

nonlinear Boussinesq equations, (1)–(3), with the above

WKB submesoscale wave model switched off. Its resolu-

tion is chosen fine enough that the initial submesoscale

wave field is completely resolved, and that it captures

wave–wave interactions and interactions between all

waves and the larger-scale turbulent eddies. Motivated by

the results from corresponding benchmark tests (Remmler

et al. 2015), small-scale turbulence is not parameterized by

the implicit adaptive local deconvolutionmethod (ALDM;

see, e.g., Hickel et al. 2006), as originally implemented

into PincFloit, but by a dynamic Smagorinsky method

(Germano et al. 1991). The corresponding Smagorinsky

coefficient is averaged over a local spatial window of 53 5

finite-volume cells so as to stabilize the scheme.

4. Numerical experiments

PincFloit–WKB and PincFloit–LES were used to

simulate the propagation of a spatially confined wave

packet in a uniformly stratified (N 5 0.02 s21) atmo-

sphere on an f plane (f5 1024 s21, except in the test case

COR, where f 5 0) with zero initial ambient flow. It is

well known from longwave–shortwave interaction the-

ory (Tabaei and Akylas 2007; Van den Bremer and

Sutherland 2014) that such a packet of small-scale waves

is able to generate a mean flow consisting of mesoscale

wave structures connected to a resonance phenomenon

(see also section 4c). In turn, the mesoscale waves may

have an influence on the propagation of the wave

packet. All simulations, investigating the resonant be-

havior of various submesoscale wave packets, are two-

dimensional. The horizontal x axis is chosen to point into

the direction of kh 5 kex and all initial fields are only

dependent on x and z, as is then also the case henceforth.

All models use periodic boundary conditions in x and z.

a. Initialization

Consequently, a locally monochromatic wave packet

with horizontal and vertical wavenumbers k and m0,

respectively, is initialized. It is vertically as well as hor-

izontally confined, with a Gaussian envelope amplitude

B̂ characterized by the standard deviations sx and sz.

Its buoyancy field is thus

b (x, z, t
0
)5 B̂ (x, z) cos (kx1m

0
z) , (81)

B̂ (x, z)5
N2

m
0

~a exp

"
2

(x2 x
0
)2

2s2
x

#
exp

"
2

(z2 z
0
)2

2s2
z

#
.

(82)

Herein the amplitude parameter ~a is chosen so that at

infinite sz static stability is given at x 5 x0, that is, N
2 1

›b/›z . 0 , for values ~a, 1. The initialization fields for

the LES model are determined from the full rotational

GW polarization relations (see, e.g., Bühler (2009),

section 8.2)

f~u, ~wg5
	
i
k
h
v̂2 ife

z
3 k

h

mN2

v̂2 2N2

v̂2 2 f 2
, i

v̂

N2



~b , (83)

which lead, by the way, to the same initialization for a

2D wave packet with l 5 0 as if one would use the

leading-order polarization relations, (59), except for the

meridional wind component n, yielding
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fu,wg (x, z, t
0
)5

	
v̂

0

k
,2

v̂
0

m
0



B̂ (x, z) sin (kx1m

0
z) , (84)

fn,bg (x, z, t
0
)5

	
2
f

k
, 1



B̂ (x, z) cos (kx1m

0
z) , (85)

where v̂0 denotes the intrinsic frequency of the initially

monochromatic wave packet with wavenumbers k andm0,

including rotational effects. In line with the hydrostatic

submesoscale-wave scaling regime, (20), defined above, the

choice falls on lx 5 2p/k 5 1000m and lz 5 22p/m0 5
100m, based on typical mesoscales like 2sx 5 Lm 5
100kmand 2sz5Hm5 1km (except for the case SCALE

in section 4d). A typical mesoscale time scale for the wave

packet test case is given by Tm 5 f 21 5 10000 s.

In PincFloit–WKB the initial fields of the wave packet

are to be defined for the Lagrangian WKB model. Fol-

lowing Muraschko et al. (2015), a certain set of ray vol-

umes, each carrying specific wave properties, is ‘‘placed’’

in a rectangular 2.5s environment around the initial center

of the wave packet in both x and z directions, covering

more than 98.7%ofwave energy density, as shown inFig. 1.

The initial phase-space wave-action density of the quasi-

monochromatic wave packet is assumed to be

N (x, z,m, t
0
)5

8>><
>>:

B̂ 2 (x, z)

2N2v̂
0

1

Dm
0

, m
0,1

#m#m
0,2

0 , else

,

(86)

wherem0,1 5m0 2Dm0/2 andm0,2 5m0 1Dm0/2. It is

then discretized by rectangles in physical space, and in

wavenumber space by two wavenumber intervals each

centered at wavenumbers m 5 m0,1 1 Dm0/4 and m 5
m0,2 2 Dm0/4, constituting together phase-space ray

volumes within which N is taken to be constant. After

initialization the ray volumes propagate through the phase

space in accordance with the ray equations, (72), (73), and

(77), changing in response to the mesoscale flow physical

location and wavenumber. Hence, an initially quasi-

monochromatic wave packet can develop quite complex

spectra, as also discernible from Fig. 6 below.

Resolution is chosen as follows: in PincFloit–LES

around 33 grid points in the x direction and 20 grid

points in the z direction per initial submesoscale wave-

length are set. For PincFloit–WKB, it turned out that 10

grid points per typical mesoscale length scale are suffi-

cient in most of the test cases (see Table 3). Parameters

describing the general setup are listed in Table 2.

b. Postprocessing

While PincFloit–WKB outputs directly the sub-

mesoscale GW momentum flux, their energy density,

andmesoscale wind and buoyancy fields, the output fields

of PincFloit–LES contain both meso- and submesoscale

information, which have to be separated. Instead of a

wavenumber filter as applied by Van den Bremer and

Sutherland (2014), a running mean over two initial sub-

mesoscale wavelengths in each spatial direction filters

submesoscale contributions from the mesoscale ones.

The former are then obtained by subtracting the meso-

scale part from the full field and subsequently, momen-

tum flux and wave energy density are calculated via
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j
, z

i
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at each grid point (xj, zi) for each output time tk, where

the overbar indicates an additional running mean over

twowavelengths. There is no significant sensitivity to the

choice of the average interval when comparing the re-

sults for an average over one up to three (and more)

initial submesoscale wavelengths.

c. Resonant interaction of mesoscale with
submesoscale GWs

It is known that energy exchange between long and

short GWs is particularly strong, when a packet of small-

scale GWs interacts with its induced large-scale mean

flow under resonance conditions. Grimshaw (1977)

FIG. 1. Schematic illustration of the initial coverage of the wave

packet in physical space with a discrete set of ray volumes, for sim-

plicity sketched as circles. The wave structures represent, for example,

the initial buoyancy field (the color bar can then be interpreted as

normalized with respect to the margin of static instability; e.g., see

section 4a). The peak amplitude is chosen to be ~a5 1. The green

dashed lines mark amplitude contours with ~a5 0:5 and ~a5 0:1. The

size of the circles mirrors the corresponding modulus of the phase-

space wave-action density N . The box covers an area of 5sx.3 5sz.
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found such resonant behavior for a modulated wave

train propagating along a horizontal channel, whereas

Sutherland (2001), Tabaei and Akylas (2007), and Van

den Bremer and Sutherland (2014) investigated wave-

mean flow interactions for spatially localized wave

packets propagating vertically through an unbounded

stratified Boussinesq fluid. Tabaei and Akylas (2007), in

particular, pointed out that flat wave packets, character-

ized by a stronger modulation in the vertical than in the

horizontal, can lead to resonant forcing of large-scale

waves. This resonance arises when the wave packet

modulation scales are compatible with those of free, hy-

drostatic inertia GWs that are natural mode solutions of

the Boussinesq system. Furthermore, in the small-

amplitude limit, where to leading order the wave packet

envelope propagates vertically as a wave of permanent

form, this resonance singles out inertia GWs whose

vertical phase velocity matches the vertical group ve-

locity of the wave packet. Tabaei and Akylas (2007)

further speculated that this mechanism might be re-

sponsible for the generation of inertia GWs in the real

atmosphere.

As noted in section 2b, the scaling regime consid-

ered by Tabaei and Akylas (2007) corresponds to the

nonhydrostatic limit, (19), which, under atmospheric

conditions, exhibits a rather strong scale separation

Lw/Lm 5 O(1024) and Hw/Hm 5 O(1022); as a result,

the associated submesoscale waves would be quite

short: Hw 5 Lw 5 O(10) m. The hydrostatic regime,

identified in (20), however, features submesoscale

GWs with length scales about one order of magnitude

smaller than typical gridpoint distances of nowadays

global NWP models and of the same magnitude as the

distances in regional limited-area models (see section 4a).

Consequently, in the latter such submesoscale waves

reside on the largest unresolved scale, and the long–

short GW resonance of Tabaei and Akylas (2007) is

relevant to this regime.

The resonance condition noted above for small-

amplitude wave packets can be written in the present

notation as

ĉ
gz
5 ĉ

pzm
, (89)

where ĉgz is the (intrinsic) vertical group velocity of the

submesoscale wave packet, and ĉpzm is the vertical phase

velocity of the induced, mesoscale inertia GWs. Van den

Bremer and Sutherland (2014) used this condition to esti-

mate the phase line tilt of the generated large-scale waves

in a nonrotational atmosphere. Here, based on (89), the

geometry of the induced mesoscale inertia GW distur-

bance in the presence of rotation is discussed, following a

kinematic approach analogous to that of the classical

Kelvin shipwave pattern (seeWhitham1974, section 12.4).

The resonance condition, (89), combined with the

dispersion relation, (5), implies that the horizontal

wavenumber km can be expressed in terms of the vertical

wavenumbermm of the induced mesoscale GWs [which

are hydrostatic according to (4)]:

k
m
56

m
m

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĉ2gzm

2
m 2 f 2

q
. (90)

As noted earlier, this assumes that (i) the submesoscale

wave packet envelope, which acts as forcing, propagates

as a wave of permanent form at constant speed ĉgz, and

(ii) the induced mesoscale waves are steady in the frame

of the moving source. The validity of these assumptions

will be tested numerically in section 4d.

In addition, one generally has ›mm/›x 5 ›km/›z,

which combined with (90) yields

›m
m

›x
2

›k
m

›m
m

›m
m

›z
5 0 . (91)

This equation for mm can be treated by the methods of

characteristics. In the far field, all characteristics (straight

TABLE 2. Synopsis of the relevant general model parameters. Here, a long dash indicates that the parameter is not used in this specific

model setup. The time step Dt is determined through the CFL criterion; because of stability reasons, there is an upper threshold for Dt in
PincFloit–WKB. There the total number of ray volumes corresponds to the product of the number of grid cells in the 5s box, and the

corresponding number per grid cell and spatial direction ~nx,ray or ~nz,ray, respectively. The smoothing parameter indicates the total number

of grid cells in both directions, which are used for the respective local smoothing. A value of 3 means, for example, a smoothing over one

grid cell and its direct neighbors (3 3 3 window).

Configuration parameter PincFloit–WKB PincFloit–LES

Boundary conditions Periodic in x and za

Resolution Dx 3 Dz Test case dependent 30.5m 3 4.9 m

Time step Dt Dynamic, CFL 5 0.5, Dtmax 5 2 s Dynamic, CFL 5 0.5, Dtmax 5 1 s

Wavenumber interval Dm0 Dm0 5 1024 m21 —

Number of ray volumes nray nray5 (5sx/Dx)~nx,ray 3 (5sz/Dz)~nz,ray —

Smoothing parameter Momentum flux: ns,uw 5 3 Dynamic Smagorinsky: ns,dyn 5 5

a Except for the pseudoincompressible simulation PSINC, where rigid boundaries are assumed in the vertical.
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lines) originate from the source (which appears as a point,

x5 z5 0, say, in themoving frame, with z. 0 behind the

source), and it is found that

(z/x)5 7
1

N

2ĉ2gzm
2
m 2 f 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ĉ2gzm
2
m 2 f 2

q . (92)

Equation (92) determines mm for given z/x, and the

corresponding km follows from (90). It should be noted

that jz/xj/‘ as jmmj/ f /ĉgz; also, when jmmj/‘, one
has jz/xj ’ 2jmmjĉgz/N / ‘. This suggests that there

must be limiting characteristics (z/x)lim, where

›(z/x)

›m
m

5 0 . (93)

From this one obtains the critical wavenumber

jmm,limj 5 (3/2f2/ĉ2gz)
1/2, which along with (92) gives

(z/x)lim 5 723/2f /N. Thus, a L-like wave pattern behind

themoving wave packet is expected as in the case of a ship

wake. The opening angle a defined by the limiting char-

acteristics is given by

a5 2 tan21

�
1

2
ffiffiffi
2

p N

f

�
. (94)

As can be seen from (19), (20), (24), and (29), in com-

pressed coordinates the opening angle is 2 tan21[1/23/2]

’ 38.98, independently of the scaling regime. Remarkably,

this angle is identical to that of the classical Kelvin ship

wave pattern on deep water (Whitham 1974).

Solving the characteristic equation, (92), form2
m gives
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Generally, according to (95) combined with (90),

there are four different possible modes: two shortwave

[corresponding to the plus sign in (95)] and two long-

wave [corresponding to the negative sign] modes. The

former are not relevant here, as their length scale is not

in agreement with the mesoscale derived in our theory.

Moreover, one of the two longwave modes (where the

phase contributions kmx and mmz have opposite signs)

does not obey the radiation condition, so that wave en-

ergy would not be radiated away from the source. Thus,

only one mode (where kmx andmmz have the same sign)

is expected to prevail in the simulations (see Fig. 2),

consistent also with Fig. 1 in Tabaei and Akylas (2007).

d. Test case studies

Theory and its numerical realization by the PincFloit–

WKB model are validated in several test case studies:

a reference simulation REF has been performed first,

investigating the propagation of a relatively high-

amplitude wave packet (~a5 0:5) in a uniformly strati-

fied atmosphere initially at rest. After that, the initial

amplitude is varied to both lower and higher amplitudes

(test cases AMPx) in order to demonstrate the robustness

of the Lagrangian WKB model for a wide range of

amplitudes of submesoscale waves. Then a wave packet

pushing the limits of the asymptotic scaling (see Table 1)

as well as the WKB (see section 2c) assumptions is ini-

tialized, thus establishing the wide applicability of the

PincFloit–WKB model and the range of validity of the

theory (test case SCALE). The test case COR examines

the sensitivity on the ratio f/N by setting f 5 0; strictly

speaking, this regime is not represented by the theory

as h 5 0. Physically, it is to be understood as a limit

case for a tropical background. Last, the test case PSINC

is used to compare LESs of the REF wave packet

in a pseudoincompressible atmosphere to the chosen

Boussinesq dynamics. PSINC will be referred to in the

discussion in section 5. Table 3 provides an overview of

the essential test case-specific model setup and namelist

FIG. 2. Inducedmesoscale wave pattern according to the kinematic

wave theory of section 4c. The limiting characteristics (z/x)lim (black

solid line), lines of constant wavenumber jkmj (dotted lines), and lines
of constant phase (green lines) for a submesoscale wave packet as in

section 4d, case REF, AMPx, or COR, are shown at a point of time

when the center of the wave packet is located at (250, 3.9) km. The

initial position of the center of the wave packet chosen for the test

case studies is indicated by the intersection of the dashed lines.
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parameters. According to (20), the chosen background

parameters N 5 0.02 s21 and f 5 1024 s21 imply

a 5 h ’ 0.07 5 O(0.1).

Wave packets have been initialized in accordance

with (82) and (84)–(86). Except for the SCALE test case,

the spatial extent of the initialization box (roughly as-

sociated with the wave packet size) in PincFloit–WKB is

250 km 3 2.5 km. The quantities shown in the following

figures are in dimensional units. The spatial coordinates

are given in kilometers, whereas the time axis is scaled

by the inverse of the inertial frequency f. The 2D LES

fields are visualized after mapping them to a 512 3 512

grid, with corresponding domain dimensions 500 km 3
10 km, except for the case SCALEwith 1000 km3 5 km.

Figure 3 shows the initial condition in the REF test

case; the distribution of wave energy density [calculated

via (88)] is displayed, where one can easily see that most

of the submesoscale energy of the wave packet is con-

tained in a range of roughly 1.5X 3 1.5Z 5̂ 150 km 3
1.5 km with the compressed coordinates X and Z from

(29). Since the wave packet amplitude is ~a5 0:5 (and

one may lose or gain factors as, e.g., 2p in the scaling

procedure), the wave packet energy density is somewhat

smaller than theoretically assumed.

For the test case REF, three slightly different

PincFloit–WKBmodel configurations are set up. First, a

single-column ray tracer with 1D spatial ray propaga-

tion, that is, only in the vertical, is initialized and no

feedback of the resolved flow onto the submesoscale

wave packet is allowed [i.e., the right-hand sides of both

(73) and (77) equal zero; shortcut: PincFloit–WKB–

1DNF]. Second, a single-column ray tracer is used that

accounts for two-way scale interactions [i.e., only the

right-hand side of (77) equals zero; shortcut: PincFloit–

WKB–1D]. Note that, although ray-volume propaga-

tion is 1D, the ray-volume amplitudes inN are not [see

(86)], so that the submesoscale wave packet induces a

2D mesoscale response. Third, horizontal ray volume

propagation is also allowed (shortcut: PincFloit–

WKB–1.5D).

After a bit less than one inertial period (t ’ 17.3 h),

one has a couple of findings. In the case of a non-

energy-conserving system with no coupled interaction

TABLE 3. Essential parameters for the initialization of a submesoscale wave packet in different test cases. Here, a long dash indicates that

the parameter is not used in this specific test case setup; that is, there is no PincFloit–WKB simulation for the case PSINC. The frequency

v̂0 5V̂1 shall indicate that the positive branch of the dispersion relation (58) is chosen. Except for the case COR it is f 5 1024 s21.

Test case REF AMP1 AMP2 COR PSINC SCALE

Simulation time t 12f21 5 120 000 s 5 2000min ’ 33.3 h

Model domain Lx 3 Lz 500 km 3 10 km 4 5Lm 3 10Hm 10Lm 3 5Hm
a

GP number PincFloit–LES nx 3 nz 16 384 3 2048 32 768 3 1024

GP number PincFloit–WKB nx 3 nz 51 3 101 — 101 3 401

Resolution PincFloit–WKB Dx 3 Dz 10 km 3 0.1 km — 10 km 3 0.025 km

Ray vol’s PincFloit–WKB ~nx,ray3 ~nz,ray 20 3 5 — 20 3 5

Amplitude ~a 0.5 0.1 1.0 0.5 0.5 0.5

Horizontal wavenumber k 2p/1000m21

Vertical wavenumber m0 22p/100m21

Frequency v̂0 V̂1

Initial vertical position z0 2 km

Initial horizontal position x0 250 km 500 km

Vertical standard deviation sz 0.5 km 0.158 km

Horizontal standard deviation sx 50 km 158.113 km

Background stratification N 0.02 s21

Coriolis parameter f 1024 s21 0 1024 s21

a In PincFloit–WKB, 10Lm 3 10Hm are used.

FIG. 3. Initial condition in the test case REF: spatial distribution

of energy density of the submesoscale wave packet «w (m2 s22) in

PincFloit–LES.
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(Fig. 4a), one observes horizontally more prolonged

mesoscale wave structures than in the validating LES

(Fig. 4d). The colored contours represent the wave-packet-

induced mesoscale horizontal winds. Furthermore, there is

no wave packet deformation with PincFloit–WKB–1DNF,

which is a result of the feedback process (to be com-

pared with Fig. 4b). Horizontal propagation of the

wave packet is rather weak compared to the vertical in

terms of the characteristic mesoscales. Incorporating

(77), with PincFloit–WKB–1.5D (Fig. 4c), a picture,

which is qualitatively as well as quantitatively very

close to the LES, is obtained.

The overlay of the theoretically derived wave struc-

tures of Fig. 2 on Fig. 4a shows that indeed, the reso-

nance condition examined in section 4c is able to explain

the lateral confinement of the induced waves: the me-

soscale wave patterns are reminiscent of modes that

develop in the wake of a ship, and the spatial extent of

them is in good agreement to the area bounded by

the limiting characteristics—except close to the wave

packet, as it is no point source as assumed in the theo-

retical derivation. Interestingly, self-acceleration effects

cause a lateral constriction of the induced structures

close to the wave packet, so that the feedback-allowing

simulations resemble the prediction even more with

regard to the limiting characteristic. The vertical wave-

lengths are predicted by (95) to be somewhat longer

than observed in these simulations and the phase line tilt

is expected to be less pronounced; these small differ-

ences are explainable by the application of the far field

approximation, the disregarded feedback from the in-

duced waves and hence the requirement of a constant

group velocity of the wave packet in section 4c, as un-

derscored by the longer wavelengths in Fig. 4a. Never-

theless, the equations derived there seem to be a very

good indicator for the prediction of the induced

wave mode.

Furthermore, the induced structures are evocative

of the ones induced by the small-amplitude non-

hydrostatic wave packet of Tabaei and Akylas (2007):

they resemble plain downward-propagating inertia

GWs. Their period—extracted from the Hovmöller
diagram in Fig. 5—is very close to the inertial

period 2p/f.

FIG. 4. Test case REF with initial amplitude ~a5 0:5 at t’ 17.3 h’ 2p/f. Spatial distribution of energy density of

the submesoscale wave packet «w (m2 s22, gray shades) and of the induced mesoscale horizontal wind speed in

x direction U (m s21, colored contours), according to (a) PincFloit–WKB–1DNF, (b) PincFloit–WKB–1D,

(c) PincFloit–WKB–1.5D, and (d) PincFloit–LES. In addition, (a) is overlaid with the theoretically derived phase

lines (phase difference p) and characteristics from Fig. 2.
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It shall be stressed again that—in contrast to the as-

sumption of Van den Bremer and Sutherland (2014)—

within the first inertial period, the wave packet energy

density distribution varies already significantly, as the

group velocity undergoes partially strong and rapid

changes: the peak values of energy density are found in

the lower sector of the wave packet (not shown). When

mesoscale wind and vertical wind shear build up, the

vertical wavenumber—and due to (72) vertical group

velocity too—of a part of the submesoscale waves un-

dergoes considerable changes according to (73), as found

by investigating the time evolution of the discrete wave-

number spectrum (Fig. 6). The characteristics and phase

lines of the wave mode predicted in section 4c might

hence slightly differ from Fig. 2 or Fig. 4a, respectively,

when abandoning the requirement of a constant group

velocity. Notably, in contrast to Tabaei and Akylas

(2007), it can be reported that PincFloit–WKB is stable

all the time, although caustics are ubiquitous in physical

space as can be seen in Fig. 6b. Similar to Bölöni et al.
(2016), it is also found (not shown) that the model con-

serves total energy very well (e.g., not more than 2%

variation in REF at the end of the simulation time), as

predicted in sections 2e and 3a(3).

The AMPx test cases substantiate the finding that the

refractive feedback onto the wave packet becomes

larger, the larger its (initial) amplitude is, as one can

clearly see in the Figs. 7 and 8. In other words, as

one moves toward small amplitudes, meso- and sub-

mesoscales interact only weakly nonlinearly and the

wave packet propagation is very well approximated by its

initial group velocity. Consequently, the difference be-

tween the results of PincFloit–WKB–1DNF (Fig. 7a) and

PincFloit–WKB–1D (Fig. 7b) is considerably smaller

than in the REF test case.

Induced mesoscale momentum amplitudes, however,

are about one order smaller in the small-amplitude case

AMP1 compared to the REF simulations, well in pro-

portion to the reduced momentum forcing by the sub-

mesoscale wave packet. While the frequency of the

induced mesoscale waves remains close to the inertial

period independently of wave packet amplitude, their

vertical extent evolving during the wave packet propa-

gation becomes larger the less refraction appears, as in

the case of a small-amplitude quasi-steady propagating

disturbance, where the mesoscale wind is too weak to

influence the wave packet.

In the case SCALE, a very flat wave packet of hy-

drostatic submesoscaleGWs is initialized, whose ratio of

vertical to horizontal amplitude-variation length sz/sx is

decreased by one order of magnitude, but whose total

energy is kept constant compared to REF. Vertical

amplitude variation is thus much stronger and horizon-

tal amplitude variation weaker than originally assumed

in theory. Beyond that, the vertical amplitude variation

scale is now close to the vertical submesoscale wave-

length. Even though the horizontal scale separation is in

accordance with the general regime, this is a case at the

limit of the underlying theory.

Figure 9 shows again the wave packet energy density

and the induced mesoscale horizontal momentum

fields as in Fig. 4. Apart from the partly bandlike rep-

resentation of the wave packet due to a limited set of

ray volumes—allowing a passable computing time—in

PincFloit–WKB, which experiences strong wind shear

changes, and a slight overestimation of the mesoscale

amplitudes by PincFloit–WKB, the results from the

parameterized model agree well with the LES model.

An inertia GW is generated whose resonant amplifica-

tion is broken off after approximately one inertial period

FIG. 5. Test case REF with initial amplitude ~a5 0:5. Hovmöller diagram of the horizontally averaged, induced

mesoscale horizontal wind speed in x directionU (m s21), according to (a) PincFloit–WKB–1.5D and (b) PincFloit–

LES.
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simulation time because of wave packet energy spreading.

The elongation of the induced mesoscale wave is hence

smaller in the vertical than, for example, in AMP1 after

that time, like in the higher-amplitude cases REF or

AMP2 after approximately two inertial periods, when

the wave packet has experienced strong refraction

effects.

The test case COR, where f5 0 in contrast to the case

REF, investigates the sensitivity of the implementation

in PincFloit–WKB on the value of f /N (Fig. 10). Energy

is radiated stronger and further laterally than in the

rotational REF case, which is reflected by the induced

wind structures. This finding has been carved out in

detail by Van den Bremer and Sutherland (2014) and

Tabaei and Akylas (2007), and underscores again the

wide applicability of PincFloit–WKB.

5. Résumé, discussion, and outlook

The first question in our study was whether there are

any submesoscale GWs that can modify mesoscale dy-

namics at typical scales. This has been investigated

within Boussinesq dynamics for typical midlatitude

tropospheric values of f/N, using scale analysis com-

paring the magnitude of large-amplitude submesoscale

GW flux convergences with the self-consistent acceler-

ation and heating in statically stable mesoscale GWs. A

range of scales of high- and midfrequency submesoscale

GWs has been identified where an impact on the me-

soscale waves is possible. It encompasses the case of very

small-scale high-frequency GWs investigated by Tabaei

and Akylas (2007), but even more interesting is the ap-

pearance of hydrostatic GWs with scales that are just

below the resolution of present-day limited-area

numerical-weather-prediction codes. For these waves

the vertical-scale separation is h 5 (f/N)1/2, while the

horizontal-scale separation is h 2.

Using multiscale asymptotics, a large-amplitude WKB

theory for the interaction between locally mono-

chromatic submesoscale GWs and a mesoscale flow has

been derived. All nondimensional fields are expanded in

terms of powers of h, and then the distinguished limit of

small h is taken. This leads to separate but coupled

equation systems, one describing explicitly resolved

mesoscale dynamics, and the other depicting sub-

mesoscale dynamics, consisting of vertical ray equations

for the submesoscale wave properties. Direct coupling is

established on the one hand by a modification of the

mesoscale-momentum equation through the vertical

convergence of submesoscale pseudomomentum flux;

FIG. 6. Test case REF with initial amplitude ~a5 0:5. (a) Vertical distribution of the vertical group velocity cgz;

(b) vertical distribution of the vertical wavenumberm of the ray volumes in a column close to the horizontal center

of the wave packet according to PincFloit–WKB–1D. The simulation time has been extended for this specific run to

t5 19.2/f’ 53.3 h. Different colors indicate different time instances. Because of the periodic boundary conditions,

one observes ray volumes propagating through themodel top and reappearing at themodel bottom close to the end

of the simulation.
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and on the other hand by a change of submesoscale

vertical wavenumber and frequency by mesoscale wind

shear regions, or, though unaffected by submesoscale

fluxes, the vertical variation of background stratifica-

tion. An interesting and useful result might seem to be

that, other than in the case of the interaction between

synoptic-scale flow and mesoscale inertia GWs, neither

is horizontal propagation of the small-scale GWs a

leading-order effect, nor are small-scale GW horizontal

flux convergences. Hence, single-column approaches to

FIG. 7. Test case AMP1 with initial amplitude ~a5 0:1 at t’ 17.3 h’ 2p/f . Spatial distribution of energy density

of the submesoscale wave packet «w (m2 s22, gray shades) and of the induced mesoscale horizontal wind speed in

x direction U (m s21, colored contours), according to (a) PincFloit–WKB–1DNF, (b) PincFloit–WKB–1D,

(c) PincFloit–WKB–1.5D, and (d) PincFloit–LES. Note the different color and gray shading range compared to Fig. 4.

FIG. 8. As in Fig. 4, but for AMP2 with initial amplitude ~a5 1:0 at t’ 17.3 h, according to (a) PincFloit–WKB–1.5D

and (b) PincFloit–LES.
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submesoscale GW modeling in mesoscale-resolving

models appear well justified at first sight. This seems to

be in contrast to previous findings about the relevance of

lateral propagation of mesoscale waves by Senf and

Achatz (2011), Sato et al. (2012), and Plougonven et al.

(2017), suggesting certain limitations of single-column

approaches. Indeed, caution is at place to not mis-

interpret results. To see this, note that the ratio between

vertical and horizontal group velocity is jcgz/jcghjj 5
jjkhj/mj 5 Hw/Lw. Hence, the horizontal distance

L covered by a wave packet propagating in the vertical

over a distance H is L 5 HLw/Hw 5 H(N*/f )
1/2, where

the scalings (4) and (20) are used. The secondary im-

portance of lateral propagation seen here is due to the

fact that, ifH5Hm is taken thenL/Lm5H/Lm(N*/f )
1/25

(f /N*)
1/2 � 1, again using (4). Hence, the submesoscale

wave packet travels over a considerably less horizontal

distance than the scale characterizing mesoscale varia-

tions. On the other hand, the ultimate justification for

single-column implementations would be that for all

possible vertical distances coverable, at most the vertical

model extent H 5 Htop, the horizontal distance L cov-

ered should be less than a horizontal mesh distance Dxh.
This would imply L/Dxh 5 Htop/Dxh(N*/f )1/2 � 1.

Typically, this condition cannot bemet. It hence appears

safer to take lateral propagation into account, and our

simulations also show improved results if one does so.

The validity of the theory has been examined by its

implementation into a mesoscale-resolving Boussinesq

model. The WKB fields of submesoscale GW ampli-

tudes and wavenumbers are discretized and predicted

by a Lagrangian ray tracer (Muraschko et al. 2015;

FIG. 9. As in Fig. 4, but for SCALE with initial amplitude ~a5 0:5 at t ’ 17.3 h, according to (a) PincFloit–

WKB-1.5D and (b) PincFloit–LES. Note the different shown extent of the domain compared to the pre-

vious figures; though, the vertical simulation domain in PincFloit–WKB–1.5D has been 10 km, so that ray

volumes do not reappear at the model bottom in (a).

FIG. 10. As in Fig. 4, but for COR with initial amplitude ~a5 0:5 and f 5 0 at t’ 17.3 h, according to (a) PincFloit–

WKB-1.5D and (b) PincFloit–LES. Note the different color range compared to Fig. 4.
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Bölöni et al. 2016) that uses a spectral phase-space

representation, thereby avoiding numerical instabilities

due to caustics (Tabaei and Akylas 2007; Rieper et al.

2013a) and also allowing the potential development of a

spectral submesoscale GW field from initially locally

monochromatic conditions. The approach is validated

against simulations by a submesoscale-resolving large-

eddy code.

Test cases launching a 2D Gaussian wave packet of

hydrostatic submesoscale GWs furnish evidence of the

applicability of the numerical approach and its un-

derlying theory. A resonance effect occurs, which has

been found in previous studies of Tabaei and Akylas

(2007) and Van den Bremer and Sutherland (2014),

and leads to the generation of mesoscale inertia GWs.

Their characteristics correspond to free modes of the

Boussinesq dynamics, which can be explained by a theo-

retical study of the resonance condition. The inertia

GWs can have a strong impact onto submesoscale

wave packets by refraction, depending on wave am-

plitude, and eventually cause a saturation or breakup

of the effective resonant energy transfer. Further case

studies show that the approach, although designed for

large-amplitude submesoscale GWs, also works for

low-amplitude submesoscale GWs, and that it also per-

forms reasonably well when the scale separation between

mesoscale and submesoscale isweaker than assumed in the

theoretical derivations. Beyond that, the code seems to be

usable for nonrotating cases as well.

The Boussinesq setting of our analysis does not say

that non-Boussinesq effects are irrelevant. The vertical

decrease of ambient density would play an important

role in operational weather forecast and climate models.

This is left out here for the mere sake of simplicity, but

corresponding generalizations as in Bölöni et al. (2016)
seem straightforward. Moreover, in an analysis based on

fully compressible dynamics, Achatz et al. (2017) iden-

tify compressible and elastic effects in the interaction

between near-inertial mesoscale waves and synoptic-

scale flow. One of these are synoptic-scale pressure

fluctuations that matter in a strongly stratified atmo-

sphere. The other is an elastic mesoscale-wave term

appearing in the synoptic-scale momentum equations.

That term is most relevant for near-inertial waves but

loses importance in the noninertial frequency range.

The most interesting submesoscale waves, which are

identified in the present study, are in the latter range.

Hence, a fully compressible treatment seems a neces-

sary extension of the present investigations based on

Boussinesq theory; however, it is not clear, whether it

will identify, at the scales of interest here, relevant non-

Boussinesq effects, beyond those resulting from the

ambient-density vertical dependence. For a first hint the

REF case has been simulated with PincFloit–LES, but

using it in the pseudoincompressible mode (Durran

1989; Rieper et al. 2013b) instead of the Boussinesq

mode (test case PSINC). pseudoincompressible dy-

namics captures the elastic effects arising in the analysis

of Achatz et al. (2017) in the momentum equation.

Figure 11 shows a snapshot of the simulation, to be

compared to Fig. 4. Apparently, at least in this case,

elastic dynamics does not seem to be of leading-order

importance.

Our analysis shows that submesoscale GWs can sig-

nificantly influence a mesoscale flow, provided their

amplitudes are large enough. It also derives a theory and

its numerical implementation for the efficient repre-

sentation of such effects in mesoscale-resolving models.

Whether submesoscale GWs at the required scales and

amplitudes are indeed present to a sufficient degree in

the atmosphere, and by which processes they can be

generated, certainly is another question that should be

investigated in the future. Mesoscale wind-field spectra

determined from aircraft data byCallies et al. (2014) and

Bierdel et al. (2016) do not exhibit dissipation at the

smallest observable scales so that one could imagine a

continuation of these well into the submesoscale range.

A further indication is that GWs at very small scales

seem to be a relevant issue in the stable planetary

boundary layer (Sun et al. 2015). Should corresponding

studies yield further support for the relevance of sub-

mesoscale GWs, an unavoidable next step would have to

be extending the Boussinesq theory to an analysis of the

compressible Euler equations.

FIG. 11. Test case PSINC in a pseudoincompressible background

with initial amplitude ~a5 0:5 at t ’ 17.3 h ’ 2p/f. Spa-

tial distribution of energy density of the submesoscale wave packet

«w (m2 s22, gray shades) and of the induced mesoscale horizontal

wind speed in x directionU (m s21, colored contours), according to

PincFloit–LES. This figure is to be compared with Fig. 4.
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APPENDIX

Derivation of a General Scaling Regime

Asmotivated at the beginning of section 2b, in order to

identify a general scaling regime for the interaction be-

tween meso- and submesoscale GWs, the submesoscale

flux convergence terms must be comparable to the lead-

ing mesoscale terms in the governing equations, (1)–(3).

Specifically, the relevant convergence terms scale as
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where one has additionally made use of the GW polar-

ization relations as given in (83). For example, for the

buoyancy-flux estimates, because of the phase shift be-

tween momentum and buoyancy, the fluxes obey the

relations <f~u ~b*g 5 O(fLwBw) 5 O(f/VwUwBw) and

<f ~w ~b*g50, with the tilde indicating the submesoscale

wave amplitudes and the asterisk denoting the complex

conjugate. The convergence terms above are to be

compared to the horizontal acceleration in the hori-

zontal momentum equation, the buoyancy time deriva-

tive in the buoyancy equation, and the buoyancy in the

vertical momentum equation for the mesoscale flow.

These terms scale as
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Using these scalings, the following ratios for the hori-

zontal momentum equation are found [always neglecting

the modulationally unstable strongly nonhydrostatic sub-

mesoscale regime in (14)]:
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The comparisons for the vertical momentum equation

yield
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and for the buoyancy equation one obtains

2
=

h
� (u
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One sees that the submesoscale wave field can impact

the mesoscale flow only via the horizontal momentum

equation. Two options exist: the first is the impact of

the low-frequency submesoscale waves via horizon-

tal momentum-flux convergence [see (A10)]. Equal-

ity between this flux term and the mesoscale-flow

horizontal acceleration is reached when, using (6),

15 (1/h)(L2
w/L

2
m)5h2p21. Hence, in this regime p5 1/2.

For an appreciable scale separation in the horizontal

[see (6)], one would expect, say, h1/2 5 O(1021). This,

however, implies very small h, so that the mesoscale-

wave amplitude, (9), that can be affected is very low.

Without showing this in any detail, it is also mentioned

that in this case the submesoscale-wave frequency is

dominated by the intrinsic part, while the Doppler term

is small. This means that the mesoscale-flow impact on

these waves is rather weak.

The second and more interesting option involves the

impact of the midfrequency submesoscale waves via

vertical momentum-flux convergence [see (A11)].

Equality between flux convergence and the mesoscale-

flow horizontal acceleration is reached here, using (4)

and (6), when 15 hawN*/f5 h22p. Hence in this regime

p 5 2, and the horizontal length scale separation h2 and

the vertical length scale separation h can be small with

h5O(1021), say, so that the mesoscale-wave amplitude

that can be affected is stronger than in the first option.

The possible range of h can be determined from the

condition that the submesoscale waves shall be in the

midfrequency range so that f/N* , aw # 1. Together

with (7) and the requirement of a sufficiently strong

scale separation h � 1, this implies (16).
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